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Ensuring sufficient liquidity is one of the key challenges for designers of prediction markets. Variants of
the logarithmic market scoring rule (LMSR) have emerged as the standard. LMSR market makers are
loss-making in general and need to be subsidized. Proposed variants, including liquidity sensitive market
makers, suffer from an inability to react rapidly to jumps in population beliefs. In this paper we propose a
Bayesian Market Maker for binary outcome (or continuous 0-1) markets that learns from the informational
content of trades. By sacrificing the guarantee of bounded loss, the Bayesian Market Maker can simulta-
neously offer: (1) significantly lower expected loss at the same level of liquidity, and, (2) rapid convergence
when there is a jump in the underlying true value of the security. We present extensive evaluations of the
algorithm in experiments with intelligent trading agents and in human subject experiments. Our investiga-
tion also elucidates some general properties of market makers in prediction markets. In particular, there is
an inherent tradeoff between adaptability to market shocks and convergence during market equilibrium.
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1. INTRODUCTION

Interest in prediction markets has increased significantly in recent years across
academia, policy makers, and the private sector [Wolfers and Zitzewitz 2004b; Ar-
row et al. 2007; Chen and Pennock 2007]. Companies like Google, Microsoft, and HP
have deployed prediction markets internally for forecasting product launch dates and
gross sales. Prediction markets have often outperformed opinion polling: for example,
the Iowa Electronic Markets have usually outperformed opinion polling in predicting
US political races [Berg et al. 2001]. Prediction markets are valuable for information
aggregation for two reasons: (1) They produce meaningful quantitative forecasts; (2)
Those who possess information are incentivized and held accountable more than they
are in alternative information-gathering methods like surveys or polls.

Wolfers and Zitzewitz [2004a] identify five key challenges to the success of predic-
tion markets . First among these is liquidity provision – can prediction markets attract
sufficient uninformed trading to be liquid and attractive to those with information?
Liquidity is the classic chicken-and-egg problem, in which some liquidity begets more
liquidity. Historically, financial markets have often used market makers to provide
initial liquidity to get the ball rolling; financial exchanges often provide specific incen-
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tives for firms to become market makers. Prediction markets have adopted the same
idea. Typically, in prediction markets, the market maker is allowed to take on a loss,
subsidizing the market, to facilitate more liquidity and faster price discovery; this loss
is taken as a cost of operation. Robin Hanson suggested a family of inventory based
market makers based on market scoring rules. Of these, the one based on the logarith-
mic market scoring rule (LMSR) is now the de facto standard for subsidized prediction
markets [Hanson 2007]. If the main purpose of the prediction market is not commer-
cial, loss-making market makers can make a lot of sense, but as prediction markets
become less experimental, subsidies become a real loss which must be minimized.

The LMSR market maker is appealing on several levels: (1) it has a deterministic
guarantee on the amount of loss it can suffer; (2) since it is purely inventory based,
it is difficult to manipulate in some settings [Chen et al. 2009]; (3) it can be shown
that, under certain conditions, particularly that participants are rational and learn
from prices, a market mediated by an LMSR market maker will converge to the ratio-
nal expectations equilibrium price [Pennock and Sami 2007]. However, the LMSR also
suffers from several drawbacks, some serious: (1) The market maker does typically run
at a loss, which can be large, (2) A single parameter, b, controls many different aspects
of the market maker’s behavior, including the loss bound, the level of liquidity in the
market, and the rate of adaptivity to market shocks; setting b to optimally manage
these tradeoffs is considered something of a “black art” [Othman et al. 2010]; (3) when
the posterior belief of the trading population does not converge (which is likely when
people have independent information and valuations), the price does not converge to
a well defined probability estimate, instead fluctuating about the equilibrium price;
the fluctuations are asymmetric and again sensitive to the choice of b, making it dif-
ficult to extract a quantitative probability estimate; (4) The market maker provides
only point probabilities over outcomes and cannot be easily coupled with a measure of
uncertainty; (5) the market maker cannot easily be applied to unbounded markets.

There have been recent efforts to address some of these shortcomings. A particu-
larly interesting approach is that of Othman et al. [2010], who propose a variant of
LMSR that effectively adjusts the b parameter as a function of how much trading
has occurred in the market. Unfortunately, as we demonstrate later in this paper, this
liquidity-sensitive market maker can become very slow to adapt to jumps in the under-
lying value if this value changes after a fair amount of trading has already occurred.
An alternative to inventory based market makers is to use the information inherent
in trades in order to set prices. The seminal paper of Glosten and Milgrom [1985]
introduced a model of market making under asymmetric information. Building upon
this model, Das (2005; 2008) and Das and Magdon-Ismail [2008] have described ef-
ficient market making algorithms for zero-profit (competitive) and profit maximizing
(monopolist) market makers. These market makers address some of the drawbacks
of the LMSR market maker. Specifically, in stylized market models where a single
shock to the value occurs, the price converges rapidly to an equilibrium price, without
expected loss; further, the markets need not have bounded payoffs. The drawback of
these Bayesian market makers has thus far been the same as that of the liquidity-
sensitive market maker: after quick convergence following an initial market shock to
the true value, the convergence after a subsequent market shock is slow, because the
market maker gets “overconfident” after initial convergence.

Contributions. We introduce a new adaptive Bayesian Market Maker (BMM) that
builds on [Das 2005; Das and Magdon-Ismail 2008]. BMM provides liquidity by adapt-
ing its spread based on its level of uncertainty about the true value. It uses two in-
ference processes: the first is on the actual price; the second is on whether a jump



has occurred. This allows it to achieve small spreads in equilibrium-like states, while
remaining adaptive to market shocks.

Evaluation of market making algorithms is challenging. We use two different eval-
uation mechanisms. First, a novel experimental paradigm for comparing market mi-
crostructures in trading experiments with human subjects. Two challenges with live
trading are: 1) the same group of traders cannot be used first in an experiment with one
market maker, and then in a second identical experiment with a second market maker.
This is because traders get primed, and even if the experiments are identical, the re-
sults are incomparable; 2) the same experiment cannot be run on two separate groups
of traders with a different market maker in each group, because the high variability
in human traders results in a very high variance due to inevitable small sample sizes
in controlled human experiments. Our design is based on a graphical 2-dimensional
random walk which simulates the classic Gambler’s Ruin problem. This allows us to
symmetrically compare different market structures.

Human subject experiments are somewhat restricted – one cannot run them too of-
ten, so it is hard to experiment with many different parameter settings of different
algorithms, or capture the effects of rare events. Therefore, we design a trading game
in which trading agents receive information equivalent to that received by humans in
the gambler’s ruin game, and allow agents with different trading strategies to partic-
ipate. We describe some plausible designs for intelligent trading agents and evaluate
market makers in terms of the quality of the market they provide when different com-
binations of the types of trading agents participate in the market.

In all our experiments, the results are consistent: BMM provides benefits compared
with LMSR. In particular, BMM quickly adapts and generally does not lose money,
while providing a liquid market. The caveat is that BMM is not loss bounded, and
there is some risk of substantial loss. We also note a property of market makers that we
conjecture is universal: there is an inherent tradeoff between how adaptive a market
maker is to changes in market conditions, its ability to converge during equilibrium,
the liquidity it provides, and its potential loss. Market designers need to keep these
tradeoffs in mind in designing market making algorithms.

2. MARKET MAKING

The key challenge in most prediction markets is liquidity. How can one incentivize
participants with good information to trade? Without uninformed traders to exploit,
informed traders will not trade (the No-Trade theorem of Milgrom and Stokey [1982]).
Automated market makers [Hanson 2007; Pennock and Sami 2007] are a means of
creating “uninformed” (or less informed) trades that can provide liquidity in modern
prediction markets. A market maker is willing to take either side of every trade, buy-
ing (resp. selling) when someone wants to sell (resp. buy); the market maker sets the
prices, which will affect whether the trade will actually execute or not. We consider
a pure dealership market, where a market maker takes one side of every trade. This
model of the market allows us to compare market makers in a fair and precise manner,
but in the future it will be important to consider integrating market makers with limit
order books (which poses more of a challenge for evaluation than design).

2.1. LMSR

Hanson [2007] describes a market maker for combinatorial prediction markets, which
we briefly review here in the context of a single market. Hanson’s technique adapts the
idea of a scoring rule to a prediction market setting. While many different scoring rules
are possible, Pennock reports that in practice the logarithmic scoring rule is the most



useful.1 The market maker will take the opposite side of any order at a price specified
by the market maker. This price depends on a parameter b and the market maker’s
current inventory qt, where t indexes the arrival of trade requests; the inventory starts
at zero, q0 = 0, which corresponds to an initial price of 0.5. The market maker sets
prices so as to guarantee bounded loss, no matter what the true liquidation value is.

Specifically, the spot price is given by ρ(qt) =
eqt/b

1+eqt/b
. At time t+ 1, if a trade arrives

for quantity Q, the cost of the trade (to the trader) is given by C(Q; qt) =
∫ qt+Q

qt
ds ρ(s) =

b ln(1 + e(qt+Q)/b) − b ln(1 + eqt/b). The volume weighted average price is |C(Q; qt)|/q,
and it corresponds to the trader accruing a position of size Q using infinitesimal in-
crements, paying the prevailing spot price at each increment. If the trader accepts the
trade at this average price, then the market maker updates its state to qt+1 = qt + Q.
Since the starting inventory q0 = 0, it is easy to verify that the maximum loss incurred
by the market maker is limQ→∞ Q− C(Q; 0) = b ln 2.

The parameter b is the only free parameter in the LMSR market maker; not only
does it bound the loss of the market maker, but it also controls how adaptive the mar-
ket maker is. If b is small, the market maker is very adaptive, taking on small loss; b
also controls liquidity in the market. An adaptive market maker leads to large bid-ask
spreads, implying less liquidity.

It is known that a market mediated by the LMSR market maker can yield a rational
expectations equilibrium if traders incorporate information from prices into their be-
liefs in a rational manner. However, as a thought experiment, consider what happens
in a case where a large trading population continues to maintain somewhat different
beliefs, and some traders regularly come in and trade some typical trade size Q.2 The
bid-ask spread δ(Q) for quantity Q, given the current inventory qt, is the difference
between the average price paid for buying Q shares versus selling Q shares;

δ(Q) =
b

Q
ln

(

cosh qt/b+ coshQ/b

2 cosh2 qt/2b

)

.

At market inception (qt = 0), the spread is decreasing in b, so higher b means more liq-
uidity (in general the relationship between liquidity and b is not monotonic). Suppose
the equilibrium price corresponds to an inventory qeq; if typical trade sizes are Q, then

the spot price fluctuations around this equilibrium have magnitude sinh(Q/b)
cosh(qeq/b)+cosh(Q/b) .

These fluctuations are asymmetric about the equilibrium and persist, making it hard
to extract a quantitative probability estimate. The choice of b is an important open
problem; smaller b guarantees smaller loss, but a less liquid market with higher fluc-
tuations around the equilibrium.

2.2. A Liquidity-Sensitive Variant of LMSR

A major shortcoming of LMSR is its inability to adapt to market liquidity levels:
the price response for a fixed trade volume is the same regardless of liquidity [Oth-
man and Sandholm 2010; Othman et al. 2010]. Formally, pi(q + α1) = pi(q) for

1http://blog.oddhead.com/2006/10/30/implementing-hansons-market-maker/
2In standard rational expectations models, traders learn, and their beliefs converge, leading to convergence
in the market maker’s price. However, this requires hyper-rational, potentially computationally unbounded,
traders and it is unclear how much time is needed for such convergence. As long as there is any variance
in the posterior distribution of beliefs in the trading population, there is continued potential for the price to
fluctuate with LMSR. This may not be a bad thing, because the fluctuations are critical to maintenance of
the loss bound, and may be the “right” thing to do. However, these fluctuations can abstractly be measured
by deviation of the price from the “true” value, and we argue that for a given level of loss, a market maker
with lower deviation from the true value is preferable.



any α and q. As a solution, Othman et al. [2010] propose a modification of LMSR
where the exogenous constant b in the cost function C(q) = bln(

∑n
j=1 e

qj/b) is replaced

with an increasing function of market volume b(q) = α
∑n

j=1 qj , where α > 0 is a

constant and n is the number of securities. The liquidity-sensitive price function is

pi(q) = α log
(

∑n
j=1 e

qj/b(q)
)

+
∑n

j=1 qje
qi/b(q)

−

∑n
j=1 qje

qj/b(q)

∑n
j=1 qj

∑n
j=1 eqj/b(q) . However, now the sum of

prices across all securities is always at least unity although it never exceeds αn log n.
The market has a loss bound of C(q0) where q0 is the initial quantity vector and so by
setting this close to zero, the loss can be arbitrarily diminished. In fact, the worst-case
revenue is R(q) = C(q)−maxi qi−C(q0) and there is a wide range of terminal market
states with reasonable uncertainty levels in which R(q) > 0 so that the market maker
actually books profits in those situations.

2.3. Information-Based Market Making

Das [2005] and Das and Magdon-Ismail [2008] describe an information-based mar-
ket maker that starts from the canonical Glosten and Milgrom [1985] model of price-
setting under asymmetric information. At time t, the market maker has some prior on
the value of the security pt(v). An arriving trader gets a signal s; the variance of s mea-
sures the uncertainty in the trader’s signal (or information set). The market maker’s
only information is its prior belief on V . Hence the information available to the mar-
ket maker and trader are different, and this information asymmetry can be measured
by the information disadvantage of the market maker, the ratio of the variance in the
market maker’s prior belief and the trader’s uncertainty.

Given this initial setting, the market maker must set a bid and ask price, and the
trader trades accordingly: if s < bid, the trader sells, and if s > ask, the trader buys.
In a competitive setting, the market maker sets prices so as to receive zero expected
profit. This is achieved by solving two non-linear fixed point equations,

ask = Ept(v)[v|s > ask]; bid = Ept(v)[v|s < bid]

This model has been extended to the sequential setting with a Bayesian market maker
[Das 2005; Das and Magdon-Ismail 2008]. After setting prices, the market maker can
now observe what the trader does (buy, sell or no trade). This gives the market maker
information regarding the trader’s signal s, and hence information regarding the re-
alization V . Thus, the market maker can update its prior belief pt(v) to pt+1(v) to
incorporate this new information. The market maker is now ready for the next trader.

The learning market maker in the sequential model is composed of two related parts.
The first maintains the belief distribution on the value, pt(v); the second sets prices to
achieve some goal, for example zero expected profit. From the reinforcement learning
perspective, bid and ask prices serve as actions, and agents’ decisions to buy or sell at
those prices provide observations that allow the market maker to update its beliefs. As
in most reinforcement learning problems, the actions (prices) serve the dual role of 1)
eliciting information (setting the bid-ask spread too high will lead to a lack of trading,
yielding little information about the trading public’s beliefs) and 2) generating reward.

Das and Magdon-Ismail [2008] present efficient approximate algorithms for per-
forming these updates for zero profit (ZP) as well as profit maximizing monopolist
market makers. In the specific algorithm considered, the trader signals are drawn
from a Gaussian distribution, and the initial market maker belief is also Gaussian.

2.4. Other Alternatives

There have been other mechanisms proposed for market making in the literature. The
dynamic pari-mutuel market (DPM) of Pennock [2004] is particularly interesting, since



in practice it effectively offers a loss bound which determines initial liquidity in the
market (theoretically there is no risk to the market institution, since it redistributes
money from losers to winners like a standard pari-mutuel market, but in practice the
initial subsidy is important to generating liquidity). However, one issue with DPM is
that it does not offer liquidity for selling, only for buying, and selling has to occur
through an alternative mechanism like a continuous double auction. Another issue is
that when participants buy shares in particular outcomes, the payoff per share is not
known at the time of purchase, since it depends on how many shares are outstanding at
the time of payoff. Other mechanisms, such as the market maker used in the Hollywood
Stock Exchange, are not well documented, although they appear to use many tuned
heuristics.

2.5. Comparison

Since LMSR has become the de facto standard in information markets, we focus in
this paper on LMSR, the recently proposed liquidity-sensitive variant, and Bayesian
market-making algorithms. Figure 1 demonstrates some fundamental aspects of these
market makers in a simple model – zero-intelligence traders arrive sequentially, with
a belief that is distributed around the true value, which can jump (a “market shock”
event). They are allowed to trade one share when they arrive – therefore they will
buy when their belief exceeds the ask price and sell when their belief is below the
bid price. While simple, this model illustrates some aspects of the different market
makers (again the posterior distribution is non-convergent here – obviously reality
lies somewhere between hyper-rational traders whose beliefs converge, and stubborn
traders who never update their beliefs – this is investigated further in Section 6).

As we see, the LMSR market maker is adaptive but non-convergent; the information
based market maker ZP [Das 2005; Das and Magdon-Ismail 2008] is convergent, but
only slowly adaptive, potentially incurring large loss; liquidity-sensitive LMSR is also
very slow to adapt, although it does not lose money – however, this is at the cost of less
liquidity in the first phase of the market, because it has to maintain a significantly
higher spread in order to recoup potential future losses because of such jumps.
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(a) Behavior in a stable market.
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(b) Adapting to a market shock.

Fig. 1: Behavior of LMSR, liquidity-sensitive (LS) LMSR and the Bayesian information based market
maker ZP for an idealized setting. In both experiments, trades are a fixed size, and traders at every time step
receive a Gaussian signal on the basis of which they trade. In (a), the trader value signals are distributed
about a stable mean; in (b), there is a jump in the mean. In (a), we see that all market makers rapidly arrive
at the target value (the mean), but LMSR fails to converge, whereas ZP converges. From (b), we see that
LMSR is very adaptive to a market shock whereas its LS variant adapts much more slowly and ZP is the
slowest of the three because it becomes overconfident.



Desiderata for a good market maker. We would like to design a market making al-
gorithm that simultaneously satisfies several criteria. First, we would like the market
maker to not make losses in expectation. It is unreasonable to expect real-money mar-
kets to be heavily subsidized in pursuit of liquidity. For now, we are willing to sacrifice
loss-boundedness in pursuit of this goal. While LMSR is loss-bounded, it typically will
substantially subsidize the market, taking on large loss. Alternative market making
schemes necessarily incur more risk. In Hanson’s words, “a computer program with
less than human intelligence that attempts to make markets runs the risk of being
out-smarted by human traders” [Hanson 2009]. This is because a market maker who
makes offers to buy and sell any security runs the risk of losing out to either better in-
formed or smarter traders. At the same time, “smart” market making algorithms may
be able to exploit human trader errors or overconfidence. Thus, it might be possible
to provide liquidity without substantial loss. Alternative risk-management strategies
can be considered in future work. For example Das [2005] proposes and evaluates one
such scheme based on ruin models from finance theory [Amihud and Mendelson 1980].

Second, we would like the market maker to be convergent in equilibrium. This means
that if the true value is not fluctuating, the market maker should maintain a reason-
ably stable price around that value. We measure this by root mean square deviation
(RMSD) of the price from the true value (also see Footnote 1 for further discussion).

Third, we would like the market maker to be quickly adaptive to jumps in the un-
derlying true value. This is measured by time of convergence to a region near the new
true value if there is a shock to the underlying state of the world that changes the
fundamental value of the security.

3. MARKET MICROSTRUCTURE

We consider a prediction market with a single binary outcome stock that trades be-
tween 0 and 100. Presumably, if the event occurs it pays off 100, and if not, it pays
off 0. However, this can also be thought of as a stock with a liquidating dividend be-
tween 0 and 100. At any point in time, an arriving trader sees the history of trading in
the stock, and the “current price,” which can be thought of as either the infinitesimal
price, the market maker’s mean belief about the probability of the event occurring, or
the middle of the bid-ask spread. The trader then chooses a quantity that she wants to
buy or sell. The market maker observes the quantity demanded, and sets a price based
on this quantity. The trader is informed of this price and can then choose whether
or not to execute the trade at that price. Our market is structured as a pure dealer
market, with the market maker as the only price setter. Only a single (infinitesimal)
spot price is seen by arriving traders. However, they can query for the price of trading
any quantity (for the trading agents described in Section 6, this becomes equivalent
to knowing the entire order book, since it can query the market maker for the price of
any quantity).

4. THE BMM ALGORITHM

BMM is based on the zero-profit market maker (ZP) mentioned in Section 2 and de-
scribed in detail in [Das and Magdon-Ismail 2008], with two main innovations: 1) the
ability to deal with trade sizes; and, most importantly, 2) the ability to adapt quickly
to market shocks. A trader arrives, observes the spot price pt and requests a trade for
quantity Q in a direction xt = ±1. xt = +1 means the trader would like to buy. For con-
creteness, we will assume that xt = +1; however, the process is completely symmetric.
The market maker performs 3 tasks.

i. Provides a VWAP quote for Q shares;
ii. Updates its state depending on whether the trade is accepted or canceled;



iii. Maintains a validity measure for its current beliefs, which is crucial to being able
to adapt to market shocks.

We briefly summarize ZP described in [Das and Magdon-Ismail 2008] first. The mar-
ket maker’s state is characterized by a Gaussian belief for the value of the market
V : N(µt, σ

2
t ). The trader signal is assumed to be normally distributed around V , so

s ∼ N(V, σ2
ǫ ). The main relevant parameter (see [Das and Magdon-Ismail 2008]) is

the information disadvantage of the market maker, ρt = σt/σǫ, the ratio of the uncer-
tainties of the market maker and trader. A universal “Q-function”, Q(ρ) (see [Das and
Magdon-Ismail 2008]) plays an important role in quoting prices. Specifically, the spot
price is just the market maker’s mean belief, pt = µt, and the ask price is

ask = µt + σǫQ(ρt)
√

1 + ρ2t .

This ask gives zero expected profit conditioned on the trade going through; this quoted
price does not take quantities into account. Described in [Das and Magdon-Ismail
2008] is a range based update procedure for the market maker: if a trader’s realized
signal is known to lie in the range z− < s < z+, then the market maker updates its
Gaussian belief to:

µt+1 = µt + σt.
B

A
,

σ2
t+1 = σ2

t

(

1− AC +B2

A2

)

,

where A,B,C are functions of z−, z+, µt, ρt, σǫ, the details of which are given in [Das
and Magdon-Ismail 2008]. This range based update is used when the trader takes an
action (accept or cancel the trade). So, for example, if the trader accepts a trade, then
s ∈ [ask,∞), and so z− = ask and z+ = ∞. If the trader cancels upon seeing the quoted
price, z− = µt and z+ = ask.

4.1. Quoting a Price for Q Shares

ZP can only quote a price for a fixed trade size. To be practical, the algorithm needs to
quote a price for an arbitrary number of shares. The spot price is pt = µt, and assume
a trader wants to buy Q shares. We implement a heuristic of treating this order as
independent orders of a fixed size α. There are thus ⌈Q/α ⌉ independent orders; the
sizes α1, α2, . . . , αk are all α, except possibly the last one.

The market maker starts in state µ1 = µt, σ
2
1 = σ2

t , and imagines the arrival of these
k mini-orders in sequence; for each mini-order arrival, the market maker quotes the
ZP price as in [Das and Magdon-Ismail 2008]; each mini-trade is accepted; the market
maker then updates his belief and receives the next mini-trade. Specifically, consider
mini-trade i, with market maker belief µi, σ

2
i . The price quoted is

pi = µi + σǫQ(ρi)
√

1 + ρ2i ;

the trade is accepted, so the market maker updates his belief with z− = pi; z
+ = ∞:

µi+1 = µi + σi
B

A
, σ2

i+1 = σ2
i

(

1− AC +B2

A2

)

;

the market maker now processes the next mini-order in the sequence until all the
mini-orders are processed. Note that these mini-orders are not real, they just describe
the process going on in the market maker algorithm. Thus, α1, . . . , αk shares, with



∑

αi = Q, get (fictitiously) executed at the prices p1, . . . , pk. The price quoted to the
trader for Q shares is the VWAP for this fictitious sequence of executions:

ask = p(Q) =
1

Q

k
∑

i=1

αipi.

Belief Update. Since the trader asked to buy, we know that s ≥ pt. The trader is
quoted a price p(Q), and so based on the trader’s action, the market maker can update
his beliefs to µt+1, σ

2
t+1 using the range update:

trade

{

accepted z− = p(Q); z+ = ∞;

canceled z− = pt; z
+ = p(Q).

We described a buy order, but a sell is entirely symmetric.

4.2. Adapting to jumps

The original ZP algorithm leads to constantly decreasing variance of the market
maker’s belief. After a number of trades have been processed, the variance and there-
fore the spreads are significantly reduced. While this increases liquidity and encour-
ages further trading towards the true market valuation, it is also the root of the market
maker’s inability to adapt to multiple market shocks. In fact, the magnitude of each
mean belief update is proportional to the variance of the market maker’s belief. Large
jumps in the true underlying value coupled with a small belief variance lead to very
small relative update values. This causes the algorithm to be exponentially slow in
adapting to a jump.

After a jump, the sequence of trades will be “one-sided”, and hence inconsistent with
a market maker’s belief of the old valuation coupled with a highly confident low belief
variance. The simple solution to this is to allow the market maker to become less confi-
dent as he sees a sequence of extremely one sided trades, i.e. an inconsistent sequence
of trades. To accomplish this, we define a consistency index C, which is a function of
the history. The consistency index measures exactly how likely the recent history of
trades observed under the current uncertainty level is, as compared to a higher uncer-
tainty. Our solution is to increase the market maker’s belief variance during periods of
inconsistency.

Specifically, BMM keeps track of a fixed window of previous trades (including can-
celed trades), along with the z+ and z− values that are inferred from those trades.
Then, at a particular time step, the probability of a sequence of trades over a window
of size W , can be computed as:

L(µ, σ) =

∫

∞

−∞

N
(

v, µ, σ
)

.
s
∏

i=1

(

Φ
(

z+i , v, σǫ

)

− Φ
(

z−i , v, σǫ

)

)

dv

The intuitive solution is to compare this probability against a fixed threshold; if the
probability is too small, we are in an inconsistent regime, and so we increase the mar-
ket maker’s uncertainty level (variance). However, this solution is problematic because
the threshold is highly sensitive to the choice of window size and particular features of
the trade sequence. Instead, we make a relative comparison with the same probability
computed at twice the uncertainty. We thus define our consistency index

C(history) = L(µt, 2σt)− L(µt, σt);

If C > 0, we increase σt, specifically σt+1 = 2σt.
One way to think about this technique is as maximum likelihood inference on the

choice of two values for uncertainty, σ and 2σ, using a particular data window. The



choice to double the variance is arbitrary (although the connection to the AIMD pro-
tocol for TCP congestion control is an interesting one to explore further); we could
perform maximum likelihood inference in order to find the “most likely” value of σ, but
this is computationally intractable and likely to have little additional benefit: since the
measure of consistency is relative, we expect the results would be robust to the choice
of multiplier, unlike with the use of a fixed threshold.

This algorithm takes advantage of the fact that more “even” sequences of trades are
more likely when the variance is lower, while sequences that are heavily biased in one
direction or the other become more likely with higher variance. The key parameter for
this algorithm is the window size W , which controls the balance between how stable
the market maker is at equilibrium and how fast it can adapt to changes. The window
size W also now becomes the dominant factor in measures like average spread, so that
the particular value of σǫ becomes unimportant.

We should note that an alternative approach would be to incorporate a jump prior
into the underlying model itself; in addition to making inference more complex and
potentially less robust, this has a major behavioral downside: the market maker will
always maintain a certain minimum spread in equilibrium due to the jump prior. In
contrast, the likelihood-based approach we use has an average equilibrium spread due
to the probability of seeing very one-sided trades by chance, but most of the time equi-
librium spreads will be small: this is significantly more appealing behavior for a mar-
ket maker to exhibit.

4.3. Preliminary Validation

In order to validate BMM, we conduct simulation experiments with the goals of (1) en-
suring the adaptive capabilities of BMM (2) comparing BMM and LMSR on the basis
of profit/loss, average spreads, and price discovery, and (3) calibrating parameters for
further experiments with market makers that provide similar quality markets.

Each trading simulation consists of 200 discrete time steps. There is an underlying
“true value” process. The initial true value is drawn from a Gaussian distribution with
mean 50 and standard deviation 12 (in general, all values are truncated at 0 and 100
whenever that may be an issue). Then, at every time step, there is a probability pj
that the true value jumps. We consider two different types of jumps. In the first type,
which is more realistic, the amount of the jump is drawn from a Gaussian distribu-
tion with mean 0 and variance σ2

j . In the second type, which is meant to simulate a
very problematic case for an information based market maker, the new value is it-
self drawn uniformly at random between 0 and 100. At any point in time, an arriving
trader receives a valuation wt drawn from a (truncated) Gaussian distribution with
mean equal to the true value at that time, and variance σ2

ǫ . If wt exceeds the current
infinitesimal price, the trader initiates a buy order, and if it is less the trader initiates
a sell order. The quantity to be bought or sold is drawn at random from an exponential
distribution with rate parameter αq.3 In our experiments, we set pj = 0.01, σj = 5,
and σǫ = 5. αq is set to 0.05 so that the mean trade size is 20. The b parameter for the
LMSR market maker was set to 125 and the window size parameter for BMM was set
to 5. These choices of the MM parameters were in order to make the average spread
approximately equal in the Gaussian jumps case, and were then used again for the
human subject trading experiments described in the next section.

Figure 2 gives some intuition into the behavior of BMM as compared with LMSR in
a single experiment. It shows that BMM can adapt rapidly to changing valuations in
the trading population, while settling into periods of low spreads and stable behavior

3This random quantity model is frequently used in models of zero-intelligence trading and models from the
econophysics literature (e.g. [Farmer et al. 2005]).
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Fig. 2: Behaviors of the market makers in an example simulation. The first two figures show BMM with
window size 5, and the third shows window size 10. BMM is clearly capable of adapting rapidly to changing
behavior in the trading population, but at the same time shows less jumpy and unstable behavior at equi-
librium than LMSR. This is explained by the spread (which is a function only of the variance of the MM’s
belief). The spread starts off high, and increases around times of uncertainty, allowing the mean to move
more quickly. At the same time, this can create occasional instabilities even when the underlying population
mean has not jumped (note some of the periods of increasing spread when the true value is stable).

at equilibrium. The typical behavior is to start off with a high variance (and hence
high spread), and then quickly converge to a low variance regime. When a jump in the
population belief occurs, the market maker can quickly pick up on that fact using the
algorithm described previously, because the sequence of trades it sees is usually heav-
ily biased in one direction, which would be more likely to occur if the market maker’s
beliefs had a higher variance (in contrast, series of trades that are more balanced are
more likely to occur in a model with lower variance, since the probability mass is more
concentrated in the “likely” region). Because of the adaptivity, in a long stable period
there will be times when the variance (and spread) will increase even though no true
change has occurred. This becomes more likely as the variance gets lower.

In simulations, for about the same average spread, BMM can in general achieve
better market properties in terms of stability at equilibrium as well as profit. In this
particular simulation, the average quoted (half) spread for BMM was 1.23 and its profit
was 3080.29. The average quoted (half) spread for the LMSR MM was 1.91 and its
profit was −956.27. Table I demonstrates this fact more generally by showing results
from 1000 simulations. In addition to the average profit and spread, this table also
reports the root mean square deviation of the infinitesimal price from the true value
(population mean) at any given point in time (a measure of price discovery), and the
single worst loss suffered by the market makers in 1000 simulations (in both cases the
single worst loss suffered by the LMSR market maker is close to the theoretical bound
of 8664.34. BMM performs better on average. However, it is worth noting that, as the
probability of a jump goes up, especially in the case where new valuations are drawn
uniformly at random, the loss suffered by BMM increases, so it may not be the best
choice for highly unstable environments.

5. HUMAN SUBJECT EXPERIMENTS

Human subject experiments by their very nature use small samples; further, human
subjects are diverse and very rapid learners, whose attention cannot reliably be main-



Table I: Performance of BMM and LMSR in simulated trading

Gaussian Shocks Uniform Shocks
BMM LMSR BMM LMSR

Profit 2081.35 −2457.30 603.40 −1897.98

Max Loss 9479.82 8662.32 50183.77 8384.42

Spread 1.42 1.35 1.79 1.40

RMSD 2.92 5.38 8.78 10.79

pTB

pLR

Fig. 3: 2-dim random walk

Table II: Random walk parameters for each of the 6
human subject experiments.

p S z V
Equilibrium 0.600 4 -1 0.7322
CommonInfoShock 0.600 2 -1 0.5846

jump to 0.600 2 +1 0.1231
LimitedInformation 0.764 4 -3 0.6912
Equilibrium(4) 0.533 4 -3 0.1897
Equilibrium(5) 0.866 4 -3 0.8453
IndivInfoShock 0.826 4 -3 0.7890

jump to 0.516 4 -2 0.2999

tained for extended time periods. This poses several challenges to live experimental
comparison of market makers.

(i) Two comparably sized groups can display vastly different behaviors due to inher-
ent diversity in backgrounds, skill sets and tendencies among human subjects.

(ii) Human subjects, being natural learners, build biases very quickly. So, for exam-
ple, if you run an experiment for the first time with a market value of (say) 0.7,
traders may take some time to become accustomed to the trading task. If you run
exactly the same experiment again, it is possible that the second time around, the
traders will display more intelligent behavior, with perhaps even a bias that the
value is around 0.7, having “generalized” from the previous experiment.

In summary, the live trading experiment should use the same group of traders simul-
taneously to compare a pair of market makers. Further, the market makers should be
compared in a completely symmetric way, using an intuitive interface.

We use a simple web-based trader interface. Traders can only place market orders,
and in order to elicit information, only the spot price is displayed. A trader can request
a trade (buy or sell) at a desired quantity, upon which the trader is quoted a (volume
weighted average) price. The trader either accepts or cancels the trade.

5.1. Experimental Design

There are two markets, LR and TB, based on the 2-dimensional random walk illus-
trated in Figure 3. The 2-D random walk is two independent 1 dimensional random
walks: horizontal (LR) and vertical (TB). Each random walk is a classic Gambler’s
Ruin problem [Feller 1958]. The starting position (indicated by the dotted red cir-
cle) is (x0, y0), and there are two probabilities, pLR, the probability of moving right
in the horizontal dimension, and pTB, the probability of moving down in the vertical
dimension. The random walk (x, y) is bounded in the grid [−S, S]2. So if |x| ≥ S, the
x-coordinate of the random walk is restarted at x0 (the y-coordinate is left unchanged)



and if |y| ≥ S, the y-coordinate of the random walk is restarted at y0 (the x-coordinate
is left unchanged).

The values of the markets LR and TB are defined before any particular experiment,
based on how often the ball hits the right edge before the left edge, or the bottom edge
before the top edge. The probability that the ball hits the right (resp. bottom) edge
before the left (resp. top) edge can be computed analytically [Feller 1958]. In terms of
pLR, pTB, x0, y0, S these values are (For p 6= 1

2 )4.

VLR =
λS−x0

LR − λ2S
LR

1− λ2S
LR

, VTB =
λS−y0

TB − λ2S
TB

1− λ2S
TB

,

where λ = p/(1 − p). Traders can simultaneously trade both markets LR and TB. For
the experiments, we set pLR = pTB = p and x0 = y0 = z. Thus, modulo the (mild)
vertical-horizontal asymmetry, the two markets are completely symmetric.

Trader Signals. Traders see a realization of the random walk unfolding over time. As
shown in Figure 3, the number of times the walk has hit the left, right, top and bottom
edges is shown, together with how much time is left. A trader can estimate VLR and VTB

from these numbers; for example, from the figure, we can make out from this partial
realization of the random walk that VLR ≈ 53

71 = 0.75 and VTB ≈ 45
75 = 0.60. Although

these are realizations of the same random process, we immediately see that the trader
is getting a noisy signal of the variable on the basis of which the market pays off (as
t → ∞, traders would have perfect information that determines the payoff). This signal
improves with time as more information is revealed; in particular, in our example, the
error in the traders signal decreases in proportion to 1/

√
t. This gradual information

revelation is akin to real markets, where traders get better informed over time.

Market Shocks. In a normal equilibrium setting the parameters p, S, z are fixed. We
can institute a market shock during the random walk by changing one or more of these
parameters. Changing these parameters can reflect different types of market shocks
in the real world – for example, if p changes, there is no visible cue, and traders have
to infer a change in the underlying dynamics from observables.

This experimental design is novel, both in how traders receive information simul-
taneously about two markets and in how information appears slowly over time. In
contrast, typical information aggregation experiments in asset markets or prediction
markets focus on the existence of a few possible states of the world where insiders have
partial information about the true state in a very clear form (for example, if the state
could be A, B, or C, and it is actually B, half the participants are told that it is not A
and half are told that it is not C) [Plott and Sunder 1988; Hanson et al. 2006].

5.2. Description of Experiments

In our experiments, participants received an endowment of cash and shares. We ran
several experiments summarized below.

Experiment 1: Equilibrium Each trader viewed their own independent realiza-
tion of the random walk for 10 minutes and had access to the market’s price history
(from which they may try to infer the information of other traders). We had 11 traders.

Experiment 2: Common Information Shock All traders viewed the same ran-
dom walk realization. They were told that the payoff of the markets would be the
actual realized ratios of the two random walks, rather than the analytically computed
probabilities. The random walk parameters were “shocked” after 5 minutes. In this

4For p =
1

2
one has to take a limit (eg. VLR =

S+x0
2S

)
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(a) Equilibrium(1)
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(b) CommonInfoShock
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(e) Equilibrium(5)
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(f) IndivInfoShock

Fig. 4: Summary behavior of LMSR and BMM in live trading experiments. Experiments (a) and (b) are
from one deployment in which BMM used a window size of 5 and (c) through (f) from a later one in which
BMM used a window size of 10. In general, BMM exhibits more stable behavior than LMSR. Additionally,
In the “shock” experiments (b) and (f), BMM is now able to adapt as well as, if not better than, LMSR.

case, the traders’ information gradually becomes completely correct, and the market
maker is eventually trading against perfectly informed traders. We had 9 participants.

Experiment 3: Limited Information Equilibrium Similar to Experiment 1, ex-
cept for the fact that traders only saw their personal realization of the random walk
for 2 minutes. They were allowed to trade for 10 minutes. 17 students participated.

Experiments 4, 5, and 6: Equilibrium With Probabilistic Shocks Participants
were told that they would be participating in 3 consecutive games. In each game, the
random walk would start off with some combination of parameters. With a 50% chance,
these parameters would change between minutes 3 and 7 of the random walk. Traders
were not told whether or not there would be a jump in a particular experiment. There
happened to be no shock (change in parameters) in Experiments 4 and 5, while there
was a shock in Experiment 6 (therefore we call it IndivInfoShock below). Trading went
on for 10 minutes. 17 students participated.

5.3. Results

Figure 4 shows the main results of the experiments, and Table III shows some statis-
tics on the price processes. There are various interesting phenomena in the individual
experiments, discussed below, but the big picture is relatively clear. BMM has a much
higher profit than LMSR in five of the six experiments, while at the same time produc-
ing a more stable price process, with better price discovery, as measured by distance
from the “true” value (RMSD values in Table III). The behavior of BMM is improved in



Table III: Summary Results of Human Subject Experiments

Profit Spread RMSD RMSDeq
LMSR BMM LMSR BMM LMSR BMM LMSR BMM

Equilibrium(1) -1350.12 47231.77 3.12 4.04 4.92 7.66 3.73 3.01
CommonInfoShock -1510.89 8972.50 3.06 3.21 20.67 15.98 16.51 6.76
LimitedInformation -1602.14 4083.95 1.61 0.49 14.43 2.15 14.56 0.93
Equilibrium(4) -2619.07 -10588.86 1.81 0.95 21.67 23.13 14.82 17.05
Equilibrium(5) -3168.55 9134.58 1.42 0.51 11.18 1.5 8.15 1
IndivInfoShock -92.29 20226.44 1.89 0.89 8.87 6.47 6.88 6.6

Note: ‘Spreads’ for each trade are computed on an order size of 40 (the average trade size observed). RMSD
is the root mean square deviation of the MM’s belief from the true value. RMSDeq is the same metric
evaluated after “convergence,” defined for convenience as the time period halfway between the last change
to the true value and the end of the trading period. The number of trades made with each market maker in
each experiment was roughly comparable.

Experiments 3 through 6, which were run with a longer adaptive window of 10, lead-
ing to more stability (and potentially slower adaptivity). While higher values of the
b parameter for LMSR would lead to improved stability (and slower adaptivity), this
would come at the cost of making even greater losses.

Experiments 1 and 2. In the Equilibrium(1) experiment, there are some severe fluc-
tuations at about the 75 sec and 200 sec marks. The fluctuations around the 75 sec
mark are probably due to individuals who had outlier realizations early on. The fluc-
tuations around the 200 sec mark are due to a single irrational “rogue” trader who was
willing to buy at a price of 100. Unfortunately, since there is no penalty for random
wild trading (unlike in real financial markets), such behavior can arise. Discounting
these anomalous trades, BMM converges nicely to equilibrium, as does LMSR (except
for its characteristic oscillations). Further, in the MarketShock experiment, BMM now
adapts as fast if not faster than LMSR.

About 30,000 of the BMM profit in Equilibrium(1) is due to the rogue trader; BMM
does what it is supposed to do though, by adapting and making profit based on its
Bayesian learned valuation. This wild trader also accounts for the increased RMSD of
BMM in this experiment. After the market equilibrates and finds the true value, the
RMSD of BMM is much better than that of LMSR (the RMSDeq row in Table III). Sim-
ilarly, when the market is close to equilibrium in the MarketShock experiment (after
seven and a half minutes of trading time in total; since the jump occurs after five min-
utes, we give the market half of the remaining time to equilibrate) BMM outperforms
LMSR in terms of RMSD by a significant margin.

These experiments reveal a couple of interesting facts. First, the behavior of some
rogue traders can seriously impact outcomes. In this case, it seems that, when given
large initial endowments and the ability to sell short, some traders use their market
power to full effect without worrying about profit. So we decided to give people more
“reasonable” endowments in the future, including an endowment of stock to start with,
and prohibit short-selling. This likely leads to a psychologically more understandable
scenario for participants, and less possibility for arbitrary manipulation by traders
who are psychologically uninvested in the outcome.

Second, the spreads and behavior of BMM were somewhat less stable than we had
expected based on simulation. BMM often increases the spread in response to market
conditions, even though there are relatively few shocks in the system. While this still
yields good behavior, we hypothesized that tweaking the window parameter would
lead to more stable behavior without sacrificing adaptivity too much. Therefore, we
changed the window size to 10 for the next set of experiments.

Experiments 3 through 6. These experiments demonstrate the typical behaviors of
BMM and LMSR clearly. A couple of interesting additional details also emerge. First,



in Expt 4 (Equilibrium(4)), convergence is very slow for both LMSR and BMM. While
LMSR comes close to the true value in the last few seconds before the end of trading,
BMM fails to do so. We hypothesize that this is because this market was the only one in
which the true value was below the starting value of 50, and thus necessitated people
selling their initial endowment to get to the true value. In this case, BMM also takes
a fairly substantial loss, because it was misled by the trading behavior. Second, in
Expt 6 (IndivInfoShock), while participants were told that the liquidation value would
only be the true value after the shock, later interviews revealed that they thought the
true value would be the average of the two true values. Therefore, the stock ended up
trading at around 60, instead of the final true value of 30.

In both these cases, it is nice that the symmetry of the experimental design en-
ables fair comparison between LMSR and BMM: trader behavior leads to anomalies
for both market makers. Indeed, even the person running the experiment was unaware
of which market maker was making which market (top-bottom vs left-right).

Summary. Our live trading experiments demonstrate several key facts. First, while
LMSR has nice theoretical properties that suggest it will converge to rational expecta-
tions equilibria, in practice this is asking an awful lot of the participants in the market.
As long as traders’ posterior beliefs do not converge to a single point, there will remain
trading incentives, and this is in evidence in all our experiments. LMSR suffers from
characteristic fluctuations in the spot price even after it should have attained equilib-
rium. BMM, on the other hand, provides a tighter belief once it has converged, and has
attractive potential to make markets without losing money, or even at a profit. It man-
ages this while providing superior price discovery and spread properties in our live
trading experiments. Experiment 4 (Equilibrium(4)) provides evidence that BMM may
sometimes suffer high losses, especially when the market behaves strangely. While oc-
casional such instances are not a huge problem, it will be important to monitor and
understand the circumstances that can lead to high losses so that we can ensure that
they cannot be reproduced by manipulators intentionally deceiving the market maker.

6. TRADING AGENT EXPERIMENTS

We simulate realistic market conditions with complex trading agents. Automated
agents are divided into technical and fundamentals traders, with the latter contin-
uously receiving new information. By varying the proportions of these traders, we are
able to simulate different market conditions.

Scenario. There are up to R rounds 1 . . . R. During round i, each fundamentals trader
is told the outcome of one per-trader Bernoulli trial with success probability pi. The
traders can then buy and sell the security. Technical traders do not receive information
about pi directly, instead receiving a list of execution prices for trades of the security.

p0 is chosen uniformly at random between 0 and 1. At the beginning of a round, pi
is calculated as follows: with probability 1/R, pi ∼ N(pi−1, σjump), and pi = pi−1 other-
wise. If pi ≤ 0 or pi ≥ 1, the security liquidates prematurely at 0 or 100 respectively.
Otherwise, the value of the security is 100pR after round R. We generally use R = 100,
with the exception of equilibrium results such as RMSDeq; here we use shorter R = 50
simulations. The shorter simulations do not have jumps, although traders are told
there could be jumps. This allows us to measure equilibrium properties in a controlled
setting. σjump = 0.2 in all trading agent experiments.

6.1. Agents

We use two types of fundamentals traders, both based on maximizing the expectation
of a linear utility function after round R, subject to a constraint on the variance of the
final utility. One type of trader uses only the information it receives from its Bernoulli



Table IV: Results of trading agent experiments

Average profit Max loss Std. dev. Spread RMSD RMSDeq
bmm lmsr bmm lmsr bmm lmsr bmm lmsr bmm lmsr bmm lmsr

10 -824 -1916 -30472 -7435 4552 3843 2.38 2.35 16.1 19.3 6.0 6.6
40 16631 -1497 -73382 -10397 98075 5274 1.24 1.94 12.2 13.0 3.6 6.3
60 23631 -1097 -480743 -10397 144968 6669 1.06 1.88 10.8 14.1 3.1 6.2
100 -296 -3055 -75582 -9679 9171 3043 0.94 1.95 9.3 8.4 3.0 4.9
RE
40 34495 -2009 -379004 -10397 141372 4614 1.62 2.02 13.3 14.6 4.9 4.6
60 25223 -2313 -689536 -10397 149058 3724 1.28 1.99 11.6 12.1 3.6 4.8
100 -739 -3077 -66106 -9808 8962 2986 1.03 1.98 9.7 9.1 3.2 4.6

Each experiment uses 10 traders: the leftmost column show the %age of fundamentals traders, and the
remainder is split between each type of technical trader. RE denotes experiments with 2 rational expec-
tations traders (counted as fundamentals traders); the other experiments include only pure fundamentals
traders. The quoted spread is at 30 shares. Each row summarizes 1500 experiments per MM. Convergence
for RMSDeq is defined from the first time the market price comes within 2 of the true underlying value.

trials, while the other assumes rational expectations and also incorporates price his-
tory. The rational expectations trader uses an inference process very similar to BMM.

We also use two simple technical traders, based on two simple stock market trading
rules [Brock et al. 1992]. One agent trades based on two moving averages, and the
other maintains a range based on price history. These agents function primarily as
noise traders. Detailed descriptions of both the fundamentals and technical traders
are available in a full version of this paper.

6.2. Results

Table IV shows summary statistics for experiments with BMM and one parameter
setting of LMSR (b = 150). More results with different parameter settings are available
in the full version. BMM uses an order size α of 3, and σǫ = 5.0.

BMM maintains a lower spread and RMSD from the true underlying market value,
while at the same time losing less money on average than comparable LMSR b param-
eter settings. Increasing LMSR’s b parameter reduces the average spread and RMSD
in equilibrium, at the cost of an increase in the expected loss. Conversely, reducing b
sacrifices RMSD and spread while still falling below BMM’s expected profit for many
combinations of technical and fundamentals traders. BMM’s maximum loss across all
15000 experiments is 689535.67, while LMSR only achieves its theoretical loss bound
in the worst case (10397.20 for b=150). BMM performs best in experiments with an
approximately even mix of fundamentals and technical traders.

The addition of rational expectations traders, who perform the same inference pro-
cess as BMM, significantly reduces LMSR’s equilibrium RMSD in markets with tech-
nical traders. These rational expectations traders make more profit than the pure fun-
damentals traders, and LMSR loses significantly more in expectation with them (for
b=150 with 60% fundamentals traders, a 95% confidence interval on LMSR’s profit
with rational expectations traders is [-2501.09, -2124.20], but is [-1434.49, -759.51]
without). The rational expectations traders are taking the same risks that BMM does,
and in doing so they provide more market stability (now LMSR is closer to convergence
in equilibrium, as would be predicted by RE models) while extracting a profit.

7. CONCLUSION

We have presented an adaptive, information based Bayesian market maker BMM
for binary (or continuous outcome) markets. In experiments with human subjects as
well as with intelligent trading agents, when controlling for liquidity (as measured by
spread), BMM demonstrates significantly better convergent behavior at equilibrium



than LMSR, while being equally adaptive to changes in the market’s valuation of the
security. Further, in all our experimental settings, BMM on average loses much less
money than LMSR, implying that it could provide substantially better liquidity at
lower cost than LMSR. One caveat is that, unlike LMSR, BMM is not loss bounded.
Another is that it is not as simple to extend BMM to combinatorial markets.

Future work includes understanding when BMM is likely to make losses and/or be
manipulated (BMM has been successfully deployed in a longer-term prediction market
with human subjects (the RPI Instructor Rating Markets), many of whom attempted
to manipulate the markets, and did not succeed in exploiting BMM [Chakraborty et al.
2011]); extending BMM to combinatorial markets; and, further investigating the inter-
play between convergence, loss and adaptability for market makers.
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