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Abstract

We study the profit-maximization problem of a monopolistic market-maker who
sets two-sided prices in an asset market. The sequential decision problem is hard
to solve because the state space is a function. We demonstrate that the belief state
is well approximated by a Gaussian distribution. We prove a key monotonicity
property of the Gaussian state update which makes the problem tractable, yielding
the first optimal sequential market-making algorithm in an established model. The
algorithm leads to a surprising insight: an optimal monopolist can provide more
liquidity than perfectly competitive market-makers in periods of extreme uncer-
tainty, because a monopolist is willing to absorb initial losses in order to learn a
new valuation rapidly so she can extract higher profits later.

1 Introduction

Designing markets to achieve certain goals is gaining renewed importance with the prevalence of
many novel markets, ranging from prediction markets [13] to markets for e-services [11]. These
markets tend to be thin (illiquid) when they first appear. Similarly, when a market shock occurs
to the value of an instrument on a financial exchange, thousands of speculative traders suddenly
possess new valuations on the basis of which they would like to trade. Periods of uncertainty, like
those following a shock, are also periods of illiquidity, so trading may be sparse right after a shock.

This is a chicken-and-egg problem. People do not want to trade in thin markets, and yet, having
many people trading is what creates liquidity. These markets therefore need to be bootstrapped
into a phase where they are sufficiently liquid to attract trading. This bootstrapping is often achieved
through market-makers [12]. Market-makers are responsible for providing liquidity and maintaining
order on the exchange. For example, the NYSE designates a single monopolist specialist (market-
maker) for each stock, while the NASDAQ allows multiple market-makers to compete.

There has been much debate on whether one of these models is better than the other. This debate
is again important today for those who are designing new markets. Should they employ a sin-
gle monopolistic market-maker or multiple competitive market-makers? Alternatively, should the
market-maker be based on some other criterion, and if so, what is the optimal design for this agent?

Market makers want to maximize profit, which could run contrary to their “social responsibility” of
providing liquidity. A monopolist market maker attempts to maximize expected discounted prof-
its, while competitive (non-colluding) market makers may only expect zero profit, since any profits
should be wiped out by competition. Therefore, one would expect markets with competitive market-
makers to be of better quality. However, this has not been observed in practice, especially in the
well-studied case of the NASDAQ vs. the NYSE [1, 9]. Many explanations have been proposed in
the empirical literature, and have explained parts of this phenomenon. One reason that has been
speculated about anecdotally but never analyzed formally is the learning aspect of the problem. For

1



example, the NYSE’s promotional literature used to tout the benefits of a monopolist for “maintain-
ing a fair and orderly market” in the face of market shocks [6].

The main challenge to formally analyzing this question is the complexity of the monopolistic market
maker’s sequential decision problem. The market maker, when setting bid and ask prices, is plagued
by a heavily path dependent exploitation-exploration dilema. There is a tradeoff between setting
the prices to extract maximum profit from the next trade versus setting the prices to get as much
information about the new value of the instrument so as to generate larger profits from future trades.
There is no known solution to this sequential decision problem.

We present the first such solution within an established model of market making. We show the
surprising fact that a monopolist market maker leads to higher market liquidity in periods of extreme
market shock than does a zero-profit competitive market maker. In various single period settings, it
has been shown that monopolists can sometimes provide greater liquidity [6] by averaging expected
profits across different trade sizes. We show for the first time that this can hold true with fixed trade
sizes in a multi-period setting, because the market-maker is willing to take losses following a shock
in order to learn the new valuation more quickly.

1.1 Market Microstructure Background

Market microstructure has recently received much attention from a computational perspective [10,
4, 12]. The driving problem of this paper is price discovery. Suppose an instrument has just begun
trading in a market where different people have different beliefs about its value. An example is
shares in the “Barack Obama wins the presidential election” market. These shares should trade at
prices that reflect the probability that the event will occur: if the outcome pays off $100, the shares
should trade at about $55 if the aggregate public belief is 55% that the event will occur. Similarly,
the price of a stock should reflect the aggregate public belief about future cash flows associated
with a company. It is well-known that markets are good at aggregating information into prices,
but different market structures possess different qualities in this regard. We are concerned with the
properties of dealer markets, in which prices are set by one or more market-makers responsible for
providing liquidity by taking one side of every trade.

Market-making has been studied extensively in the theoretical market microstructure literature [8, 7,
for example], but only recently has the dynamic multi-period problem gained attention [2, 3]. Since
we are interested in the problem of how a market-maker learns a value for an asset, we follow the
general model of Glosten and Milgrom which abstracts away from the problem of quantities by
restricting attention to situations where the market-maker places bid and ask quotes for one unit of
the asset at each time step. Das [3] has extended this model to consider the market-maker’s learning
problem with competitive pricing, while Darley et al [2] have used similar modeling for simulations
of the NASDAQ. The Glosten and Milgrom model has become a standard model in this area.

Liquidity, which is not easy to quantify, is the prime social concern. In practice, it is a function of
the depth of the limit order book. In our models, we measure liquidity using the bid-ask spread,
or alternatively the probability that a trade will occur. This gives a good indication of the level of
informational heterogeneity in the market, and of execution costs. The dynamic behavior of the
spread gives insight into the price discovery process.

1.2 Our Contribution

We consider the question of optimal sequential price-setting in the Glosten-Milgrom model. The
market-maker sets bid and ask prices at each trading period1 and when a trader arrives she has the
option of buying or selling at those prices, or of not executing a trade. There are many results
relating to the properties of zero-profit (competitive) market-makers [7, 3]. The zero-profit problem
is a single-period decision-making problem with online belief updates. Within this same framework,
one can formulate the decision problem for a monopolist market-maker who maximizes her total
discounted profit as a reinforcement learning problem. The market maker’s state is her belief about
the instrument value, and her action is to set bid and ask prices. The market maker’s actions must
trade off profit taking (exploitation) with price discovery (exploration).

1The MM is willing to buy at the bid price and sell at the ask price.
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The complexity of the sequential problem arises from the complexity of the state space and the fact
that the action space is continuous. The state of the market-maker must represent her belief about
the true value of the asset being traded. As such, it is a probability density function. In a parametric
setting, the state space is finite dimensional, but continuous. Even if we assume a Gaussian prior
for the market-maker’s belief as well as for the beliefs of all the traders, the market-maker’s beliefs
quickly become a complex product of error functions, and the exact dynamic programming problem
becomes intractable.

We solve the Bellman equation for the optimal sequential market maker within the framework of
Gaussian state space evolution, a close approximation to the true state space evolution. We present
simulation results which testify to how closely the Gaussian framework approximates the true evolu-
tion. The Gaussian approximation alone does not alleviate the difficulties associated with reinforce-
ment learning in continuous action and state spaces.2 However within our setting, we prove a key
monotonicity property for the state update. This property allows us to solve for the value function
exactly using a single pass dynamic program.

Thus, our first contribution is a complete solution to the optimal sequential market making problem
within a Gaussian update framework. Our second contribution relates to the phenomenological
implications for market behavior. We obtain the surprising result that in periods of extreme shock,
when the market maker has large uncertainty relative to the traders, the monopolist provides greater
liquidity than competitive zero-profit market-makers. The monopolist increases liquidity, possibly
taking short term losses, in order to learn more quickly, and in doing so offers the better social
outcome. Of course, once the monopolist has adapted to the shock, she equilibrates at a higher bid
ask spread than the the corresponding zero-profit market maker with the same beliefs.

2 The Model and the Sequential Decision Problem

2.1 Market Model

At time 0, a shock occurs causing an instrument to attain value V which will be held fixed through
time (we consider one instrument in the market). This could represent a real market shock to a stock
value (change in public beliefs), an IPO, or the introduction of a new contract in a prediction market.
We use a model similar to Das’s [3] extension of the Glosten and Milgrom [7] model. We assume
that trading is divided into a sequence of discrete trading time steps, each time step corresponding
to the arrival of a trader. The value V is drawn from some distribution gV (v).

The market-maker (MM ), at each time step t ≥ 0, sets bid and ask prices bt ≤ at at which she is
willing to respectively buy and sell one unit. Traders arrive at time-steps t ≥ 0. Trader t arrives with
a noisy estimate wt of V , where wt = V + εt. The {εt} are zero mean i.i.d. random variables with
distribution function Fε. We will assume that Fε is symmetric, so that Fε(−x) = 1 − Fε(x). The
trader decides whether to trade at either the bid or ask prices depending on the value ofwt. The trader
will buy at at if wt > at (she thinks the instrument is undervalued), sell at bt if wt < bt (she thinks
the instrument is overvalued) and do nothing otherwise. MM receives a signal xt ∈ {+1, 0,−1}
indicating whether the trader bought, did nothing or sold. Note that information is conveyed only by
the direction of the trade. Information can also be conveyed by the patterns and size of trades, but
the present work abstracts away from those considerations.

The market-maker’s objective is to maximize profit. In perfect competition, the MM is pushed to
setting bid and ask prices that yield zero expected profit. In a monopolistic setting, she wants to
optimize the profits she receives over time. As we will see below, this can be a difficult problem to
solve. A commonly used alternative is to consider a greedy, or myopically optimal MM who only
maximizes her expected profit from the next trade. This is a good approximation for agents with a
high discount factor, since they are more concerned with immediate reward. We will consider all
three types of market-makers, (1) Zero-profit, (2) Myopic, and (3) Optimal.

2Where one has to resort to unbounded value iteration methods whose convergence and uniqueness proper-
ties are little understood.
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2.2 State Space

The state space for the MM is determined by MM’s belief about the value V , described by a density
function pt at time step t. The MM decides on actions (bid and ask prices) (bt, at) based on pt. The
MM receives signal xt ∈ {+1, 0,−1} as to whether the trader bought, sold, or did nothing.

Let qt(V ; bt, at) be the probability of receiving signal xt given bid and ask (bt, at), conditioned on
V . Assuming that Fε is continuous at bt − V and at − V , a straightforward calculation yields

qt(V ; bt, at) =


1− Fε(at − V ) xt = +1,
Fε(at − V )− Fε(bt − V ) xt = 0,
Fε(bt − V ) xt = −1,

or, qt(V ; bt, at) = Fε(z+
t − V ) − Fε(z−t − V ), where z+

t and z−t are respectively +∞, at, bt
and at, bt,−∞ when xt = +1, 0,−1. The Bayesian update to pt is then given by pt+1(v) =
pt(v) qt(v;bt,at)

At , where the normalization constant At =
∫∞
−∞ dv pt(v)qt(v; bt, at). Unfolding the

recursion gives pt+1(v) = p0(v)
∏t
τ=1

qτ (v;bτ ,aτ )
Aτ

2.3 Solving for Market Maker Prices

Let bt ≤ at, and let rt be the expected profit at time t. The expected discounted return is then R =∑∞
t=0 γ

trt where 0 < γ < 1 is the discount factor. The optimal MM maximizesR. We can compute
rt as rt =

∫∞
−∞ dv vFε(−v) (pt(v + bt) + pt(at − v)). rt decomposes into two terms which can

be identified as the bid and ask side profits, rt = rbidt (bt) + raskt (at). In perfect competition, MM
should not be expecting any profit on either the bid or ask side. This is because if the contrary were
true, a competing MM could place bid or ask prices so as to obtain less profit, wiping out MM ’s
advantage. This should hold at every time step. Hence the MM will set bid and ask prices such that
rbidt (bt) = 0 and raskt (at) = 0. Solving for bt, at, we find that bt and at must satisfy the following
fixed point equations (these are also derived for the case of Gaussian noise by Das [3]),

bt =

∫∞
−∞ dv vpt(v)Fε(bt − v)∫∞
−∞ dv pt(v)Fε(bt − v)

= Ept [V |xt = −1], at =

∫∞
−∞ dv vpt(v)Fε(v − at)∫∞
−∞ dv pt(v)Fε(v − at)

= Ept [V |xt = +1]

(assuming the denominators, which are the conditional probabilities of hitting the bid or ask are
non-zero). The myopic monopolist maximizes rt. For the typical case of well behaved distributions
pt(v) and Fε, the bid and ask returns display a single maximum. In this case, we can obtain bmypt
and amypt by setting the derivatives to zero (we assume the functions are well behaved so that the
derivatives are defined). Letting fε(x) = F ′ε(x) be the density function for the noise εt, b

myp
t and

amypt satisfy the fixed point equations

bt =

∫∞
−∞ dv pt(v)(vfε(bt − v)− Fε(bt − v))∫∞

−∞ dv pt(v)fε(bt − v)
, at =

∫∞
−∞ dv pt(v)(vfε(at − v) + Fε(v − at))∫∞

−∞ dv pt(v)fε(at − v)

The optimal strategy for MM is not as easy to obtain. When γ is large, the expected discounted
return R could be significantly higher than the myopic return. The optimal MM might choose to
sacrifice short term return for a substantially larger return over the long term. The only reason to
do this is if choosing a sub-optimal short term strategy will lead to a significant decrease in the
uncertainty in V (which translates to a narrowing of the probability distribution pt(v)). MM can
then exploit this more certain information regarding V in the longer term.

The optimal strategy for the MM is encapsulated in the Bellman equation for the value functional
(where the state pt, is a function, (bt, at) is the action, and π is a policy):

V (pt;π) = E[r0|pt, bπt (pt), aπt (pt)] + γE[V (pt+1;π)|pt, bπt (pt), aπt (pt)]

This equation reflects the fact that the MM’s expected profit is a function of both her immediate
expected return, and her future state, which is also affected by her bid and ask prices. The fact that
V is a value functional leads to numerous technical problems when solving this Bellman equation.
The problem is heavily path dependent with the number of paths being exponential in the number
of trading periods. To make this tractable, we use a Gaussian approximation for the state space
evolution.
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true state update (solid) illustrating that the Gaus-
sian approximation is valid.
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Figure 2: Gaussian integrals and normalization
constants used in the derivation of the DP and
the state updates.

2.4 The Gaussian Approximation

From a Gaussian prior and performing Bayesian updates, one expects that the state distribution
will be closely approximated by a Gaussian (see Figure 1). Thus, forcing the MM to maintain a
Gaussian belief over the true value at each time t should give a good approximation to the true state
space evolution, and the resulting optimal actions should closely match the true optimal actions. In
making this reduction, we reduce the state space to a two parameter function class parameterized by
the mean and variance, (µt, σ2

t ). The value function is independent of µt (hence dependent only on
σt), and the optimal action is of the form bt = µt − δt, at = µt + δt. Thus,

V (σt) = max
δ
{rt(σt, δ) + γE[V (σt+1)|δ]} (1)

To compute the expectation on the RHS, we need the probabilistic dynamics in the (approximate)
Gaussian state space, i.e., we need the evolution of µt, σt.

Let N(·),Φ(·) denote the standard normal density and distribution. Let pt(v) = 1
σt
N
(
v−µt
σt

)
be

Gaussian with mean µt and variance σ2
t . Assume that the noise is also Gaussian with variance σ2

ε ,
so Fε(x) = Φ( xσε ). At time t+ 1, after the Bayesian update, we have

pt+1 =
1
A
· 1
σt
N
(
v−µt
σt

) [
Φ
(
z+−v
σε

)
− Φ

(
z−−v
σε

)]
.

The normalization constant A(z+, z−) is given in Figure 2, and z+
t and z−t are respectively

+∞, at, bt and at, bt,−∞ when xt = +1, 0,−1. The updates µt+1 and σ2
t+1 are obtained from

Ept+1 [V ] =
∫
dv vpt+1(v) and Ept+1 [V 2] =

∫
dv v2pt+1(v). After some tedious algebra (see

supplementary information), we obtain

µt+1 = µt + σt ·
B

A
, (2)

σ2
t+1 = σ2

t

(
1− AC +B2

A2

)
. (3)

Figure 2 gives the expressions for A,B,C.
Theorem 2.1 (Monotonic state update). σ2

t+1 ≤ σ2
t (see supplementary information for proof).
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Establishing that σt is decreasing in t allows us to solve the dynamic program efficiently (note that
the property of decreasing variance is well-known for the case of an update to a Gaussian prior when
the observation is also Gaussian – we are showing this for threshold observations).

2.5 Solving the Bellman Equation

We now return to the Bellman equation (1). In light of Theorem 2.1, the RHS of this equation is
dependent only on states σt+1 that are strictly smaller than the state σt on the LHS. We can thus
solve this problem numerically by computing V (0) and then building up the solution for a fine grid
on the real line. We use linear interpolation between previously computed points if the variance
update leads to a point not on the grid.

We need to explicitly construct the states on the RHS with respect to which the expectation is being
taken. The expectation is with respect to the future state σt+1, which depends directly on the trade
outcome xt ∈ {−1, 0,+1}. We define ρt = σt/σε and q = δt/σε

√
1 + ρ2

t , where at = µt + δt and
bt = µt − δt. The following table sumarizes some of the useful quantities:

xt Prob. µt+1 σt+1

+1 1− Φ(qt) µt + κtσt αtσt
0 2Φ(qt)− 1 µt βtσt
−1 1− Φ(qt) µt − κtσt αtσt

where

α
2
t = 1−

ρ2tN(qt)(N(qt)− qt[1− Φ(qt)])

(1 + ρ2t )(1− Φ(qt))2

β
2
t = 1−

2ρ2t qtN(qt)

(1 + ρ2t )(2Φ(qt)− 1)

κt =

vuut ρ2t

1 + ρ2t

N(qt)

1− Φ(qt)

Note that qt > 0, αt, βt < 1 and κt > 0. We can now compute E[V (σt+1|δt)] as

2(1− Φ(qt))V (αtσt) + (2Φ(qt)− 1)V (βtσt).

This allows us to complete the specification for the Bellman equation (with x = ρ2
t where ρt = σ

σε
is the MM’s information disadvantage)

V (x;σε) = max
q


2σ2

ε

√
1 + x

„
q(1− Φ(q))− x

1 + x
N(q)

«
+ γ

ˆ
2(1− Φ(q))V (α2(x, q)x;σε) + (2Φ(q)− 1)V (β2(x, q)x;σε)

˜ff
where α2(x, q) and β2(x, q) are as defined above with ρ2

t = x and qt = q.

We define the optimal action q∗(x) as the value of q that maximizes the RHS. When x = 0,
the myopic and optimal MM coincide, and so we have that V (0) = 2q∗(1−Φ(q∗))

1−γ , where q∗ =
q∗(0) ≈ 0.7518 satisfies q∗N(q∗) = 1− Φ(q∗). Note that if we only maximize the first term in the
value function, we obtain the myopic action qmyp(ρ), satisfying the fixed point equation: qmyp =
(1 + ρ2

t )
1−Φ(qmyp)
N(qmyp) . There is a similarly elegant solution for the zero-profit MM under the Gaussian

assumption, obtained by setting rt = 0, yielding the fixed point equation: qzero = ρ2t
1+ρ2t

N(qzero)
1−Φ(qzero) .

10 standard fixed point iterations are sufficient to solve these equations accurately.

3 Experimental Results

First, we validate the Gaussian approximation by simulating a market as follows. The initial value
V is drawn from a Gaussian with mean 0 and standard deviation σ, and we set the discount rate
γ = 0.9. Each simulation consists of 100 trading periods at which point discounted returns become
negligible. At each trading step t, a new trader arrives with a valuation wt ∼ N(V, 1) (Gaussian
with mean V and variance 1). We report results averaged over more than 10,000 simulations, each
with a randomly sampled value of V .

In each simulation, the market-maker’s state updates are given by the Gaussian approximation (2),
(3), according to which she sets bid and ask prices. The trader at time-step t trades by comparing
wt to bt, at. We simulate the outcomes of the optimal, myopic, and zero-profit MMs. An alternative
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Figure 3: MM Properties derived from the solution of the Bellman equation.

is to maintain the exact state as a product of error functions, and extract the mean and variance
for computing the optimal action. This is computationally prohibitive, and leads to no significant
differences. If the real world conformed to the MM’s belief, a new value Vt would be drawn from
N(µt, σt) at each trading period t, and then the trader would receive a sample wt ∼ N(Vt, 1). All
our computations are exact within this “Gaussian” world, however the point here is to test the degree
to which the Gaussian and real worlds differ.

The ideal test of our optimal MM is against the true optimal for the real world, which is intractable.
However, if we find that the theoretical value function for the optimal MM in the Gaussian world
matches the realized value function in the real world, then we have strong, though not necessarily
conclusive, evidence for two conclusions: (1) The Gaussian world is a good approximation to the
real world, otherwise the realized and theoretical value functions would not coincide; (2) Since the
two worlds are nearly the same, the optimal MM in the Gaussian world should closely match the
true optimal. Figure 3(a) presents results which show that the realized and theoretical value func-
tions are essentially the same, presenting the desired evidence (note that with independent updates,
the posterior should be asymptotically Gaussian). Figure 3(a) also demonstrates that the optimal
significantly outperforms the myopic market-maker. Figure 3(b) shows how the bid-ask spread will
behave as a function of the MM information disadvantage.

Some phenomenological properties of the market are shown in Figure 4.3 For a starting MM in-
formation disadvantage of ρ = 3, the optimal MM initially has significantly lower spread, even
compared with the zero profit market-maker. The reason for this outcome is illustrated in Figure
3(c) where we see that the optimal market maker is offering lower spreads and taking on significant
initial loss to be compensated later by significant profits due to better price discovery. At equilibrium
the optimal MM’s spread and the myopic spread are equal, as expected.

4 Discussion

Our solution to the Bellman equation for the optimal monopolistic MM leads to the striking conclu-
sion that the optimal MM is willing to take early losses by offering lower spreads in order to make
significantly higher profits later (Figures 3(b,c) and 4). This is quantitative evidence that the optimal
MM offers more liquidity than a zero-profit MM after a market shock, especially when the MM is
at a large information disadvantage. In this regime, exploration is more important than exploitation.
Competition may actually impede the price discovery process, since the market makers would have
no incentive to take early losses for better price discovery – competitive pricing is not necessarily
informationally efficient (there are quicker ways for the market to “learn” a new valuation).

3With both zero-profit and optimal MMs we reproduce one of the key findings of Das [3]: the market
exhibits a two-regime behavior. Price jumps are immediately followed by a regime of high spreads (the price-
discovery regime), and then when the market-maker learns the new valuation, the market settles into an equi-
librium regime of lower spreads (the efficient market regime).
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Our solution is based on reducing a functional state space to a finite-dimensional one in which the
Bellman equation can be solved efficiently. When the state is a probability distribution, updated
according to independent events, we expect the Gaussian approximation to closely match the real
state evolution. Hence, our methods may be generally applicable to problems of this form.

While this paper presents a stylized model, simple trading models have been shown to produce rich
market behavior in many cases (for example, [5]). The results presented here are an example of
the kinds of insights that can be be gained from studying market properties in these models while
approaching agent decision problems from the perspective of machine learning. At the same time,
this paper is not purely theoretical. The eventual algorithm we present is easy to implement, and we
are in the process of evaluating this algorithm in test prediction markets. Another direction we are
pursuing is to endow the traders with intelligence, so they may learn the true value too. We believe
the Gaussian approximation admits a solution for a monopolistic market-maker and adaptive traders.
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